Laman Utama / Soalan Lazim

Soalan Lazim

kami telah merumuskan beberapa masalah biasa

pengeluaran

  • Q.

    Adakah anda membuat produk tersuai?

    A.

    ya. Kami menyediakan pelanggan dengan penyelesaian OEM/ODM. Kuantiti pesanan minimum OEM ialah 10,000 keping.

  • Q.

    Bagaimana anda membungkus produk?

    A.

    Kami membungkus mengikut peraturan Pertubuhan Bangsa-Bangsa Bersatu, dan kami juga boleh menyediakan pembungkusan khas mengikut keperluan pelanggan.

  • Q.

    Apakah jenis sijil yang anda ada?

    A.

    Kami mempunyai ISO9001, CB, CE, UL, BIS, UN38.3, KC, PSE.

  • Q.

    Adakah anda memberikan sampel percuma?

    A.

    Kami menyediakan bateri dengan kuasa tidak melebihi 10WH sebagai sampel percuma.

  • Q.

    Apakah kapasiti pengeluaran anda?

    A.

    120,000-150,000 keping setiap hari, setiap produk mempunyai kapasiti pengeluaran yang berbeza, anda boleh membincangkan maklumat terperinci mengikut e-mel.

  • Q.

    Berapa lama masa yang diperlukan untuk menghasilkan?

    A.

    Lebih kurang 35 hari. Masa tertentu boleh diselaraskan melalui e-mel.

  • Q.

    Berapa lama masa pengeluaran sampel anda?

    A.

    Dua minggu (14 hari).

lain-lain

  • Q.

    Apakah syarat pembayaran?

    A.

    Kami biasanya menerima bayaran pendahuluan 30% sebagai deposit dan 70% sebelum penghantaran sebagai pembayaran akhir. Kaedah lain boleh dirundingkan.

  • Q.

    Apakah syarat penghantaran?

    A.

    Kami menyediakan: FOB dan CIF.

  • Q.

    Apakah kaedah pembayaran?

    A.

    Kami menerima pembayaran melalui TT.

  • Q.

    Pasaran mana yang telah anda jual?

    A.

    Kami telah mengangkut barangan ke Eropah Utara, Eropah Barat, Amerika Utara, Timur Tengah, Asia, Afrika dan tempat-tempat lain.

Teknologi

  • Q.

    Apakah bateri?

    A.

    Batteries are a kind of energy conversion and storage devices that convert chemical or physical energy into electrical energy through reactions. According to the different energy conversion of the battery, the battery can be divided into a chemical battery and a biological battery. A chemical battery or chemical power source is a device that converts chemical energy into electrical energy. It comprises two electrochemically active electrodes with different components, respectively, composed of positive and negative electrodes. A chemical substance that can provide media conduction is used as an electrolyte. When connected to an external carrier, it delivers electrical energy by converting its internal chemical energy. A physical battery is a device that converts physical energy into electrical energy.

  • Q.

    Apakah perbezaan antara bateri primer dan bateri sekunder?

    A.

    Perbezaan utama ialah bahan aktif berbeza. Bahan aktif bateri sekunder boleh diterbalikkan, manakala bahan aktif bateri primer tidak. Nyahcas sendiri bateri primer jauh lebih kecil daripada bateri sekunder. Namun, rintangan dalaman jauh lebih besar daripada bateri sekunder, jadi kapasiti beban lebih rendah. Di samping itu, kapasiti khusus jisim dan kapasiti khusus isipadu bateri utama adalah lebih ketara daripada bateri boleh dicas semula yang tersedia.

  • Q.

    Apakah prinsip elektrokimia bateri Ni-MH?

    A.

    Ni-MH batteries use Ni oxide as the positive electrode, hydrogen storage metal as the negative electrode, and lye (mainly KOH) as the electrolyte. When the nickel-hydrogen battery is charged: Positive electrode reaction: Ni(OH)2 + OH- → NiOOH + H2O–e- Adverse electrode reaction: M+H2O +e-→ MH+ OH- When the Ni-MH battery is discharged: Positive electrode reaction: NiOOH + H2O + e- → Ni(OH)2 + OH- Negative electrode reaction: MH+ OH- →M+H2O +e-

  • Q.

    Apakah prinsip elektrokimia bateri litium-ion?

    A.

    The main component of the positive electrode of the lithium-ion battery is LiCoO2, and the negative electrode is mainly C. When charging, Positive electrode reaction: LiCoO2 → Li1-xCoO2 + xLi+ + xe- Negative reaction: C + xLi+ + xe- → CLix Total battery reaction: LiCoO2 + C → Li1-xCoO2 + CLix The reverse reaction of the above reaction occurs during discharge.

  • Q.

    Apakah piawaian yang biasa digunakan untuk bateri?

    A.

    Commonly used IEC standards for batteries: The standard for nickel-metal hydride batteries is IEC61951-2: 2003; the lithium-ion battery industry generally follows UL or national standards. Commonly used national standards for batteries: The standards for nickel-metal hydride batteries are GB/T15100_1994, GB/T18288_2000; the standards for lithium batteries are GB/T10077_1998, YD/T998_1999, and GB/T18287_2000. In addition, the commonly used standards for batteries also include the Japanese Industrial Standard JIS C on batteries. IEC, the International Electrical Commission (International Electrical Commission), is a worldwide standardization organization composed of electrical committees of various countries. Its purpose is to promote the standardization of the world's electrical and electronic fields. IEC standards are standards formulated by the International Electrotechnical Commission.

  • Q.

    Apakah struktur utama bateri Ni-MH?

    A.

    Komponen utama bateri hidrida nikel-logam ialah lembaran elektrod positif (nikel oksida), lembaran elektrod negatif (aloi simpanan hidrogen), elektrolit (terutamanya KOH), kertas diafragma, cincin pengedap, penutup elektrod positif, bekas bateri, dll.

  • Q.

    Apakah komponen struktur utama bateri litium-ion?

    A.

    Komponen utama bateri litium-ion ialah penutup bateri atas dan bawah, kepingan elektrod positif (bahan aktif ialah litium kobalt oksida), pemisah (membran komposit khas), elektrod negatif (bahan aktif ialah karbon), elektrolit organik, bekas bateri (dibahagikan kepada dua jenis shell keluli dan shell aluminium) dan sebagainya.

  • Q.

    Apakah rintangan dalaman bateri?

    A.

    Ia merujuk kepada rintangan yang dialami oleh arus yang mengalir melalui bateri apabila bateri berfungsi. Ia terdiri daripada rintangan dalaman ohmik dan rintangan dalaman polarisasi. Rintangan dalaman bateri yang ketara akan mengurangkan voltan kerja nyahcas bateri dan memendekkan masa nyahcas. Rintangan dalaman dipengaruhi terutamanya oleh bahan bateri, proses pembuatan, struktur bateri, dan faktor lain. Ia merupakan parameter penting untuk mengukur prestasi bateri. Nota: Secara amnya, rintangan dalaman dalam keadaan bercas ialah standard. Untuk mengira rintangan dalaman bateri, ia harus menggunakan meter rintangan dalaman khas dan bukannya multimeter dalam julat ohm.

  • Q.

    Apakah voltan nominal?

    A.

    Voltan nominal bateri merujuk kepada voltan yang dipamerkan semasa operasi biasa. Voltan nominal bateri nikel-hidrogen nikel-kadmium sekunder ialah 1.2V; voltan nominal bateri litium sekunder ialah 3.6V.

  • Q.

    Apakah voltan litar terbuka?

    A.

    Voltan litar terbuka merujuk kepada perbezaan potensi antara elektrod positif dan negatif bateri apabila bateri tidak berfungsi, iaitu apabila tiada arus yang mengalir melalui litar. Voltan kerja, juga dikenali sebagai voltan terminal, merujuk kepada perbezaan potensi antara kutub positif dan negatif bateri apabila bateri berfungsi, iaitu apabila terdapat lebihan arus dalam litar.

  • Q.

    Apakah kapasiti bateri?

    A.

    Kapasiti bateri dibahagikan kepada kuasa undian dan keupayaan sebenar. Kapasiti terkadar bateri merujuk kepada ketetapan atau jaminan bahawa bateri harus mengeluarkan jumlah minimum elektrik di bawah keadaan nyahcas tertentu semasa reka bentuk dan pembuatan ribut. Piawaian IEC menetapkan bahawa bateri nikel-kadmium dan nikel-logam hidrida dicas pada 0.1C selama 16 jam dan dinyahcas pada 0.2C hingga 1.0V pada suhu 20°C±5°C. Kapasiti terkadar bateri dinyatakan sebagai C5. Bateri litium-ion ditetapkan untuk mengecas selama 3 jam di bawah suhu purata, voltan malar (1C)-voltan malar (4.2V) mengawal keadaan yang menuntut, dan kemudian dinyahcas pada 0.2C hingga 2.75V apabila elektrik yang dinyahcas adalah kapasiti undian. Kapasiti sebenar bateri merujuk kepada kuasa sebenar yang dikeluarkan oleh ribut di bawah keadaan nyahcas tertentu, yang terutamanya dipengaruhi oleh kadar nyahcas dan suhu (secara tegasnya, kapasiti bateri harus menyatakan keadaan caj dan nyahcas). Unit kapasiti bateri ialah Ah, mAh (1Ah=1000mAh).

  • Q.

    Apakah kapasiti nyahcas baki bateri?

    A.

    Apabila bateri boleh dicas semula dinyahcas dengan arus yang besar (seperti 1C atau ke atas), disebabkan oleh "kesan kesesakan" yang wujud dalam kadar resapan dalaman arus lebih arus, bateri telah mencapai voltan terminal apabila kapasiti tidak dinyahcas sepenuhnya. , dan kemudian menggunakan arus kecil seperti 0.2C boleh terus mengeluarkan, sehingga 1.0V/keping (bateri nikel-kadmium dan nikel-hidrogen) dan 3.0V/keping (bateri litium), kapasiti yang dilepaskan dipanggil kapasiti baki.

  • Q.

    Apakah platform pelepasan?

    A.

    Platform nyahcas bateri boleh dicas semula Ni-MH biasanya merujuk kepada julat voltan di mana voltan kerja bateri agak stabil apabila dinyahcas di bawah sistem nyahcas tertentu. Nilainya berkaitan dengan arus nyahcas. Semakin besar arus, semakin rendah beratnya. Platform nyahcas bateri litium-ion biasanya berhenti mengecas apabila voltan ialah 4.2V, dan masa kini kurang daripada 0.01C pada voltan malar, kemudian biarkan selama 10 minit, dan nyahcas kepada 3.6V pada sebarang kadar nyahcas semasa. Ia adalah standard yang diperlukan untuk mengukur kualiti bateri.

  • Q.

    Apakah kaedah penandaan untuk bateri boleh dicas semula yang ditentukan oleh IEC?

    A.

    Mengikut piawaian IEC, tanda bateri Ni-MH terdiri daripada 5 bahagian. 01) Battery type: HF and HR indicate nickel-metal hydride batteries 02) Battery size information: including the diameter and height of the round battery, the height, width, and thickness of the square battery, and the values ​​are separated by a slash, unit: mm 03) Discharge characteristic symbol: L means that the suitable discharge current rate is within 0.5C M indicates that the suitable discharge current rate is within 0.5-3.5C H indicates that the suitable discharge current rate is within 3.5-7.0C X indicates that the battery can work at a high rate discharge current of 7C-15C. 04) High-temperature battery symbol: represented by T 05) Battery connection piece: CF represents no connection piece, HH represents the connection piece for battery pull-type series connection, and HB represents the connection piece for side-by-side series connection of battery belts. Sebagai contoh, HF18/07/49 mewakili bateri hidrida nikel-logam segi empat sama dengan lebar 18mm, 7mm dan ketinggian 49mm. KRMT33/62HH mewakili bateri nikel-kadmium; kadar nyahcas adalah antara 0.5C-3.5, bateri tunggal siri suhu tinggi (tanpa sekeping penyambung), diameter 33mm, ketinggian 62mm. According to the IEC61960 standard, the identification of the secondary lithium battery is as follows: 01) The battery logo composition: 3 letters, followed by five numbers (cylindrical) or 6 (square) numbers. 02) Huruf pertama: menunjukkan bahan elektrod berbahaya bagi bateri. I—mewakili litium-ion dengan bateri terbina dalam; L—mewakili elektrod logam litium atau elektrod aloi litium. 03) Huruf kedua: menunjukkan bahan katod bateri. C—elektrod berasaskan kobalt; N—elektrod berasaskan nikel; M—elektrod berasaskan mangan; V—elektrod berasaskan vanadium. 04) Huruf ketiga: menunjukkan bentuk bateri. R-mewakili bateri silinder; L-mewakili bateri segi empat sama. 05) Nombor: Bateri silinder: 5 nombor masing-masing menunjukkan diameter dan ketinggian ribut. Unit diameter ialah milimeter, dan saiznya ialah sepersepuluh milimeter. Apabila mana-mana diameter atau ketinggian lebih besar daripada atau sama dengan 100mm, ia harus menambah garis pepenjuru antara kedua-dua saiz. Bateri segi empat sama: 6 nombor menunjukkan ketebalan, lebar dan ketinggian ribut dalam milimeter. Apabila mana-mana tiga dimensi lebih besar daripada atau sama dengan 100mm, ia harus menambah garis miring antara dimensi; jika mana-mana daripada tiga dimensi kurang daripada 1mm, huruf "t" ditambah di hadapan dimensi ini, dan unit dimensi ini ialah satu persepuluh milimeter. Sebagai contoh, ICR18650 mewakili bateri litium-ion sekunder silinder; bahan katod adalah kobalt, diameternya kira-kira 18mm, dan ketinggiannya kira-kira 65mm. ICR20/1050. ICP083448 mewakili bateri litium-ion sekunder persegi; bahan katod adalah kobalt, ketebalannya kira-kira 8mm, lebarnya kira-kira 34mm, dan ketinggiannya kira-kira 48mm. ICP08/34/150 mewakili bateri litium-ion sekunder persegi; bahan katod adalah kobalt, ketebalannya kira-kira 8mm, lebarnya kira-kira 34mm, dan ketinggiannya kira-kira 150mm.

  • Q.

    Apakah bahan pembungkusan bateri?

    A.

    01) Non-dry meson (paper) such as fiber paper, double-sided tape 02) PVC film, trademark tube 03) Connecting sheet: stainless steel sheet, pure nickel sheet, nickel-plated steel sheet 04) Lead-out piece: stainless steel piece (easy to solder) Pure nickel sheet (spot-welded firmly) 05) Plugs 06) Protection components such as temperature control switches, overcurrent protectors, current limiting resistors 07) Carton, paper box 08) Plastic shell

  • Q.

    Apakah tujuan pembungkusan, pemasangan dan reka bentuk bateri?

    A.

    01) Beautiful, brand 02) The battery voltage is limited. To obtain a higher voltage, it must connect multiple batteries in series. 03) Protect the battery, prevent short circuits, and prolong battery life 04) Size limitation 05) Easy to transport 06) Design of special functions, such as waterproof, unique appearance design, etc.

  • Q.

    Apakah aspek utama prestasi bateri sekunder secara umum?

    A.

    Ia terutamanya termasuk voltan, rintangan dalaman, kapasiti, ketumpatan tenaga, tekanan dalaman, kadar nyahcas diri, hayat kitaran, prestasi pengedap, prestasi keselamatan, prestasi penyimpanan, penampilan, dll. Terdapat juga lebihan caj, lebihan nyahcas dan rintangan kakisan.

  • Q.

    Apakah item ujian kebolehpercayaan bateri?

    A.

    01) Cycle life 02) Different rate discharge characteristics 03) Discharge characteristics at different temperatures 04) Charging characteristics 05) Self-discharge characteristics 06) Storage characteristics 07) Over-discharge characteristics 08) Internal resistance characteristics at different temperatures 09) Temperature cycle test 10) Drop test 11) Vibration test 12) Capacity test 13) Internal resistance test 14) GMS test 15) High and low-temperature impact test 16) Mechanical shock test 17) High temperature and high humidity test

  • Q.

    Apakah item ujian keselamatan bateri?

    A.

    01) Short circuit test 02) Overcharge and over-discharge test 03) Withstand voltage test 04) Impact test 05) Vibration test 06) Heating test 07) Fire test 09) Variable temperature cycle test 10) Trickle charge test 11) Free drop test 12) low air pressure test 13) Forced discharge test 15) Electric heating plate test 17) Thermal shock test 19) Acupuncture test 20) Squeeze test 21) Heavy object impact test

  • Q.

    Apakah kaedah pengecasan standard?

    A.

    Charging method of Ni-MH battery: 01) Constant current charging: the charging current is a specific value in the whole charging process; this method is the most common; 02) Constant voltage charging: During the charging process, both ends of the charging power supply maintain a constant value, and the current in the circuit gradually decreases as the battery voltage increases; 03) Constant current and constant voltage charging: The battery is first charged with constant current (CC). When the battery voltage rises to a specific value, the voltage remains unchanged (CV), and the wind in the circuit drops to a small amount, eventually tending to zero. Lithium battery charging method: Constant current and constant voltage charging: The battery is first charged with constant current (CC). When the battery voltage rises to a specific value, the voltage remains unchanged (CV), and the wind in the circuit drops to a small amount, eventually tending to zero.

  • Q.

    Apakah cas standard dan nyahcas bateri Ni-MH?

    A.

    Piawaian antarabangsa IEC menetapkan bahawa pengecasan dan pelepasan standard bateri hidrida nikel-logam ialah: pertama nyahcas bateri pada 0.2C hingga 1.0V/kepingan, kemudian cas pada 0.1C selama 16 jam, biarkan selama 1 jam, dan letakkannya. pada 0.2C hingga 1.0V/keping, iaitu Untuk mengecas dan menyahcas standard bateri.

  • Q.

    Apakah pengecasan nadi? Apakah kesan ke atas prestasi bateri?

    A.

    Pengecasan nadi biasanya menggunakan pengecasan dan nyahcas, tetapkan selama 5 saat dan kemudian dilepaskan selama 1 saat. Ia akan mengurangkan kebanyakan oksigen yang dihasilkan semasa proses pengecasan kepada elektrolit di bawah nadi nyahcas. Ia bukan sahaja mengehadkan jumlah pengewapan elektrolit dalaman, tetapi bateri lama yang telah terpolarisasi secara beransur-ansur akan pulih secara beransur-ansur atau mendekati kapasiti asal selepas 5-10 kali mengecas dan menyahcas menggunakan kaedah pengecasan ini.

  • Q.

    Apakah pengecasan trickle?

    A.

    Pengecasan trickle digunakan untuk mengimbangi kehilangan kapasiti yang disebabkan oleh nyahcas sendiri bateri selepas ia dicas sepenuhnya. Secara amnya, pengecasan arus nadi digunakan untuk mencapai tujuan di atas.

  • Q.

    Apakah kecekapan pengecasan?

    A.

    Kecekapan pengecasan merujuk kepada ukuran sejauh mana tenaga elektrik yang digunakan oleh bateri semasa proses pengecasan ditukar kepada tenaga kimia yang boleh disimpan oleh bateri. Ia dipengaruhi terutamanya oleh teknologi bateri dan suhu persekitaran kerja ribut—secara amnya, semakin tinggi suhu ambien, semakin rendah kecekapan pengecasan.

  • Q.

    Apakah kecekapan pelepasan?

    A.

    Kecekapan nyahcas merujuk kepada kuasa sebenar yang dilepaskan ke voltan terminal di bawah keadaan nyahcas tertentu kepada kapasiti terkadar. Ia dipengaruhi terutamanya oleh kadar pelepasan, suhu ambien, rintangan dalaman dan faktor lain. Secara amnya, semakin tinggi kadar pelepasan, semakin tinggi kadar pelepasan. Semakin rendah kecekapan pelepasan. Semakin rendah suhu, semakin rendah kecekapan nyahcas.

  • Q.

    Apakah kuasa keluaran bateri?

    A.

    The output power of a battery refers to the ability to output energy per unit time. It is calculated based on the discharge current I and the discharge voltage, P=U*I, the unit is watts. The lower the internal resistance of the battery, the higher the output power. The internal resistance of the battery should be less than the internal resistance of the electrical appliance. Otherwise, the battery itself consumes more power than the electrical appliance, which is uneconomical and may damage the battery.

  • Q.

    Apakah nyahcas sendiri bateri sekunder? Apakah kadar nyahcas sendiri bagi pelbagai jenis bateri?

    A.

    Self-discharge is also called charge retention capability, which refers to the retention capability of the battery's stored power under certain environmental conditions in an open circuit state. Generally speaking, self-discharge is mainly affected by manufacturing processes, materials, and storage conditions. Self-discharge is one of the main parameters to measure battery performance. Generally speaking, the lower the storage temperature of the battery, the lower the self-discharge rate, but it should also note that the temperature is too low or too high, which may damage the battery and become unusable. After the battery is fully charged and left open for some time, a certain degree of self-discharge is average. The IEC standard stipulates that after fully charged, Ni-MH batteries should be left open for 28 days at a temperature of 20℃±5℃ and humidity of (65±20)%, and the 0.2C discharge capacity will reach 60% of the initial total.

  • Q.

    Apakah ujian pelepasan diri 24 jam?

    A.

    The self-discharge test of lithium battery is: Generally, 24-hour self-discharge is used to test its charge retention capacity quickly. The battery is discharged at 0.2C to 3.0V, constant current. Constant voltage is charged to 4.2V, cut-off current: 10mA, after 15 minutes of storage, discharge at 1C to 3.0 V test its discharge capacity C1, then set the battery with constant current and constant voltage 1C to 4.2V, cut-off current: 10mA, and measure 1C capacity C2 after being left for 24 hours. C2/C1*100% should be more significant than 99%.

  • Q.

    Apakah perbezaan antara rintangan dalaman keadaan bercas dan rintangan dalaman keadaan dinyahcas?

    A.

    The internal resistance in the charged state refers to the internal resistance when the battery is 100% fully charged; the internal resistance in the discharged state refers to the internal resistance after the battery is fully discharged. Generally speaking, the internal resistance in the discharged state is not stable and is too large. The internal resistance in the charged state is more minor, and the resistance value is relatively stable. During the battery's use, only the charged state's internal resistance is of practical significance. In the later period of the battery's help, due to the exhaustion of the electrolyte and the reduction of the activity of internal chemical substances, the battery's internal resistance will increase to varying degrees.

  • Q.

    Apakah rintangan statik? Apakah rintangan dinamik?

    A.

    Rintangan dalaman statik ialah rintangan dalaman bateri semasa dicas, dan rintangan dalaman dinamik ialah rintangan dalaman bateri semasa mengecas.

  • Q.

    Adakah ujian rintangan cas berlebihan standard?

    A.

    The IEC stipulates that the standard overcharge test for nickel-metal hydride batteries is: Discharge the battery at 0.2C to 1.0V/piece, and charge it continuously at 0.1C for 48 hours. The battery should have no deformation or leakage. After overcharge, the discharge time from 0.2C to 1.0V should be more than 5 hours.

  • Q.

    Apakah ujian hayat kitaran standard IEC?

    A.

    IEC stipulates that the standard cycle life test of nickel-metal hydride batteries is: After the battery is placed at 0.2C to 1.0V/pc 01) Charge at 0.1C for 16 hours, then discharge at 0.2C for 2 hours and 30 minutes (one cycle) 02) Charge at 0.25C for 3 hours and 10 minutes, and discharge at 0.25C for 2 hours and 20 minutes (2-48 cycles) 03) Charge at 0.25C for 3 hours and 10 minutes, and release to 1.0V at 0.25C (49th cycle) 04) Charge at 0.1C for 16 hours, put it aside for 1 hour, discharge at 0.2C to 1.0V (50th cycle). For nickel-metal hydride batteries, after repeating 400 cycles of 1-4, the 0.2C discharge time should be more significant than 3 hours; for nickel-cadmium batteries, repeating a total of 500 cycles of 1-4, the 0.2C discharge time should be more critical than 3 hours.

  • Q.

    Apakah tekanan dalaman bateri?

    A.

    Refers to the internal air pressure of the battery, which is caused by the gas generated during the charging and discharging of the sealed battery and is mainly affected by battery materials, manufacturing processes, and battery structure. The main reason for this is that the gas generated by the decomposition of moisture and organic solution inside the battery accumulates. Generally, the internal pressure of the battery is maintained at an average level. In the case of overcharge or over-discharge, the internal pressure of the battery may increase: For example, overcharge, positive electrode: 4OH--4e → 2H2O + O2↑; ① The generated oxygen reacts with the hydrogen precipitated on the negative electrode to produce water 2H2 + O2 → 2H2O ② If the speed of reaction ② is lower than that of reaction ①, the oxygen generated will not be consumed in time, which will cause the internal pressure of the battery to rise.

  • Q.

    Apakah ujian pengekalan cas standard?

    A.

    IEC stipulates that the standard charge retention test for nickel-metal hydride batteries is: After putting the battery at 0.2C to 1.0V, charge it at 0.1C for 16 hours, store it at 20℃±5℃ and humidity of 65%±20%, keep it for 28 days, then discharge it to 1.0V at 0.2C, and Ni-MH batteries should be more than 3 hours. The national standard stipulates that the standard charge retention test for lithium batteries is: (IEC has no relevant standards) the battery is placed at 0.2C to 3.0/piece, and then charged to 4.2V at a constant current and voltage of 1C, with a cut-off wind of 10mA and a temperature of 20 After storing for 28 days at ℃±5℃, discharge it to 2.75V at 0.2C and calculate the discharge capacity. Compared with the battery's nominal capacity, it should be no less than 85% of the initial total.

  • Q.

    Apakah ujian litar pintas?

    A.

    Gunakan wayar dengan rintangan dalaman ≤100mΩ untuk menyambungkan kutub positif dan negatif bateri yang dicas penuh dalam kotak kalis letupan untuk membuat litar pintas kutub positif dan negatif. Bateri tidak boleh meletup atau terbakar.

  • Q.

    Apakah ujian suhu tinggi dan kelembapan tinggi?

    A.

    The high temperature and humidity test of Ni-MH battery are: After the battery is fully charged, store it under constant temperature and humidity conditions for several days, and observe no leakage during storage. The high temperature and high humidity test of lithium battery is: (national standard) Charge the battery with 1C constant current and constant voltage to 4.2V, cut-off current of 10mA, and then put it in a continuous temperature and humidity box at (40±2)℃ and relative humidity of 90%-95% for 48h, then take out the battery in (20 Leave it at ±5)℃ for two h. Observe that the appearance of the battery should be standard. Then discharge to 2.75V at a constant current of 1C, and then perform 1C charging and 1C discharge cycles at (20±5)℃ until the discharge capacity Not less than 85% of the initial total, but the number of cycles is not more than three times.

  • Q.

    Apakah eksperimen kenaikan suhu?

    A.

    Selepas bateri dicas sepenuhnya, masukkan ke dalam ketuhar dan panaskan dari suhu bilik pada kadar 5°C/min. Selepas bateri dicas sepenuhnya, masukkan ke dalam ketuhar dan panaskan dari suhu bilik pada kadar 5°C/min. Apabila suhu ketuhar mencapai 130°C, simpan selama 30 minit. Bateri tidak boleh meletup atau terbakar. Apabila suhu ketuhar mencapai 130°C, simpan selama 30 minit. Bateri tidak boleh meletup atau terbakar.

  • Q.

    Apakah eksperimen berbasikal suhu?

    A.

    The temperature cycle experiment contains 27 cycles, and each process consists of the following steps: 01) The battery is changed from average temperature to 66±3℃, placed for 1 hour under the condition of 15±5%, 02) Switch to a temperature of 33±3°C and humidity of 90±5°C for 1 hour, 03) The condition is changed to -40±3℃ and placed for 1 hour 04) Put the battery at 25℃ for 0.5 hours These four steps complete a cycle. After 27 cycles of experiments, the battery should have no leakage, alkali climbing, rust, or other abnormal conditions.

  • Q.

    Apakah ujian jatuh?

    A.

    Selepas bateri atau pek bateri dicas sepenuhnya, ia dijatuhkan dari ketinggian 1m ke konkrit (atau simen) dikisar tiga kali untuk mendapatkan kejutan dalam arah rawak.

  • Q.

    Apakah eksperimen getaran?

    A.

    The vibration test method of Ni-MH battery is: After discharging the battery to 1.0V at 0.2C, charge it at 0.1C for 16 hours, and then vibrate under the following conditions after being left for 24 hours: Amplitude: 0.8mm Make the battery vibrate between 10HZ-55HZ, increasing or decreasing at a vibration rate of 1HZ every minute. The battery voltage change should be within ±0.02V, and the internal resistance change should be within ±5mΩ. (Vibration time is 90min) The lithium battery vibration test method is: After the battery is discharged to 3.0V at 0.2C, it is charged to 4.2V with constant current and constant voltage at 1C, and the cut-off current is 10mA. After being left for 24 hours, it will vibrate under the following conditions: The vibration experiment is carried out with the vibration frequency from 10 Hz to 60 Hz to 10 Hz in 5 minutes, and the amplitude is 0.06 inches. The battery vibrates in three-axis directions, and each axis shakes for half an hour. The battery voltage change should be within ±0.02V, and the internal resistance change should be within ±5mΩ.

  • Q.

    Apakah ujian impak?

    A.

    Selepas bateri dicas sepenuhnya, letakkan rod keras secara mendatar dan jatuhkan objek seberat 20 paun dari ketinggian tertentu pada rod keras. Bateri tidak boleh meletup atau terbakar.

  • Q.

    Apakah eksperimen penembusan?

    A.

    Selepas bateri dicas sepenuhnya, lekapkan paku dengan diameter tertentu melalui pusat ribut dan biarkan pin di dalam bateri. Bateri tidak boleh meletup atau terbakar.

  • Q.

    Apakah eksperimen kebakaran?

    A.

    Letakkan bateri yang dicas penuh pada peranti pemanas dengan penutup pelindung unik untuk kebakaran, dan tiada serpihan akan melalui penutup pelindung.

  • Q.

    Apakah pensijilan yang telah diluluskan oleh produk syarikat?

    A.

    Ia telah lulus pensijilan sistem kualiti ISO9001:2000 dan pensijilan sistem perlindungan alam sekitar ISO14001:2004; produk telah memperoleh pensijilan EU CE dan pensijilan UL Amerika Utara, lulus ujian perlindungan alam sekitar SGS, dan telah memperoleh lesen paten Ovonic; pada masa yang sama, PICC telah meluluskan produk syarikat dalam pengunderaitan Skop dunia.

  • Q.

    Apakah itu bateri Sedia Untuk Digunakan?

    A.

    Bateri Sedia untuk digunakan ialah jenis bateri Ni-MH baharu dengan kadar pengekalan cas tinggi yang dilancarkan oleh syarikat. Ia adalah bateri tahan storan dengan prestasi dwi bateri primer dan sekunder dan boleh menggantikan bateri utama. Maksudnya, bateri boleh dikitar semula dan mempunyai baki kuasa yang lebih tinggi selepas penyimpanan untuk masa yang sama seperti bateri Ni-MH sekunder biasa.

  • Q.

    ​​Why is Ready-To-Use (HFR) the ideal product to replace disposable batteries?

    A.

    Compared with similar products, this product has the following remarkable features: 01) Smaller self-discharge; 02) Longer storage time; 03) Over-discharge resistance; 04) Long cycle life; 05) Especially when the battery voltage is lower than 1.0V, it has a good capacity recovery function; More importantly, this type of battery has a charge retention rate of up to 75% when stored in an environment of 25°C for one year, so this battery is the ideal product to replace disposable batteries.

  • Q.

    Apakah langkah berjaga-jaga semasa menggunakan bateri?

    A.

    01) Please read the battery manual carefully before use; 02) The electrical and battery contacts should be clean, wiped clean with a damp cloth if necessary, and installed according to the polarity mark after drying; 03) Do not mix old and new batteries, and different types of batteries of the same model can not be combined so as not to reduce the efficiency of use; 04) The disposable battery cannot be regenerated by heating or charging; 05) Do not short-circuit the battery; 06) Do not disassemble and heat the battery or throw the battery into the water; 07) When electrical appliances are not in use for a long time, it should remove the battery, and it should turn the switch off after use; 08) Do not discard waste batteries randomly, and separate them from other garbage as much as possible to avoid polluting the environment; 09) When there is no adult supervision, do not allow children to replace the battery. Small batteries should be placed out of the reach of children; 10) it should store the battery in a cool, dry place without direct sunlight.

  • Q.

    Apakah perbezaan antara pelbagai bateri boleh dicas semula standard?

    A.

    At present, nickel-cadmium, nickel-metal hydride, and lithium-ion rechargeable batteries are widely used in various portable electrical equipment (such as notebook computers, cameras, and mobile phones). Each rechargeable battery has its unique chemical properties. The main difference between nickel-cadmium and nickel-metal hydride batteries is that the energy density of nickel-metal hydride batteries is relatively high. Compared with batteries of the same type, the capacity of Ni-MH batteries is twice that of Ni-Cd batteries. This means that the use of nickel-metal hydride batteries can significantly extend the working time of the equipment when no additional weight is added to the electrical equipment. Another advantage of nickel-metal hydride batteries is that they significantly reduce the "memory effect" problem in cadmium batteries to use nickel-metal hydride batteries more conveniently. Ni-MH batteries are more environmentally friendly than Ni-Cd batteries because there are no toxic heavy metal elements inside. Li-ion has also quickly become a common power source for portable devices. Li-ion can provide the same energy as Ni-MH batteries but can reduce weight by about 35%, suitable for electrical equipment such as cameras and laptops. It is crucial. Li-ion has no "memory effect," The advantages of no toxic substances are also essential factors that make it a common power source. It will significantly reduce the discharge efficiency of Ni-MH batteries at low temperatures. Generally, the charging efficiency will increase with the increase of temperature. However, when the temperature rises above 45°C, the performance of rechargeable battery materials at high temperatures will degrade, and it will significantly shorten the battery's cycle life.

  • Q.

    Berapakah kadar nyahcas bateri? Berapakah kadar pelepasan ribut setiap jam?

    A.

    Nyahcas kadar merujuk kepada hubungan kadar antara arus nyahcas (A) dan kapasiti terkadar (A•h) semasa pembakaran. Nyahcas kadar sejam merujuk kepada jam yang diperlukan untuk melepaskan kapasiti terkadar pada arus keluaran tertentu.

  • Q.

    Mengapakah bateri perlu dipanaskan semasa merakam pada musim sejuk?

    A.

    Since the battery in a digital camera has a low temperature, the active material activity is significantly reduced, which may not provide the camera's standard operating current, so outdoor shooting in areas with low temperature, especially. Pay attention to the warmth of the camera or battery.

  • Q.

    Apakah julat suhu operasi bateri litium-ion?

    A.

    Caj -10—45℃ Nyahcas -30—55℃

  • Q.

    Bolehkah bateri yang berlainan kapasiti digabungkan?

    A.

    Jika anda mencampurkan bateri baharu dan lama dengan kapasiti berbeza atau menggunakannya bersama-sama, mungkin terdapat kebocoran, voltan sifar, dsb. Ini disebabkan perbezaan kuasa semasa proses pengecasan, yang menyebabkan sesetengah bateri dicas berlebihan semasa pengecasan. Sesetengah bateri tidak dicas sepenuhnya dan mempunyai kapasiti semasa nyahcas. Bateri tinggi tidak dinyahcas sepenuhnya, dan bateri berkapasiti rendah terlalu dinyahcas. Dalam lingkaran ganas sedemikian, bateri rosak, dan bocor atau mempunyai voltan rendah (sifar).

  • Q.

    Apakah litar pintas luaran, dan apakah kesannya terhadap prestasi bateri?

    A.

    Menyambungkan dua hujung luar bateri kepada mana-mana konduktor akan menyebabkan litar pintas luaran. Kursus pendek mungkin membawa akibat yang teruk untuk jenis bateri yang berbeza, seperti suhu elektrolit meningkat, tekanan udara dalaman meningkat, dsb. Jika tekanan udara melebihi voltan tahan penutup bateri, bateri akan bocor. Keadaan ini merosakkan bateri dengan teruk. Jika injap keselamatan gagal, ia mungkin menyebabkan letupan. Oleh itu, jangan litar pintas bateri secara luaran.

  • Q.

    Apakah faktor utama yang mempengaruhi hayat bateri?

    A.

    01) Charging: When choosing a charger, it is best to use a charger with correct charging termination devices (such as anti-overcharge time devices, negative voltage difference (-V) cut-off charging, and anti-overheating induction devices) to avoid shortening the battery life due to overcharging. Generally speaking, slow charging can prolong the service life of the battery better than fast charging. 02) Discharge: a. The depth of discharge is the main factor affecting battery life. The higher the depth of release, the shorter the battery life. In other words, as long as the depth of discharge is reduced, it can significantly extend the battery's service life. Therefore, we should avoid over-discharging the battery to a very low voltage. b. When the battery is discharged at a high temperature, it will shorten its service life. c. If the designed electronic equipment cannot completely stop all current, if the equipment is left unused for a long time without taking out the battery, the residual current will sometimes cause the battery to be excessively consumed, causing the storm to over-discharge. d. When using batteries with different capacities, chemical structures, or different charge levels, as well as batteries of various old and new types, the batteries will discharge too much and even cause reverse polarity charging. 03) Storage: If the battery is stored at a high temperature for a long time, it will attenuate its electrode activity and shorten its service life.

  • Q.

    Bolehkah bateri disimpan di dalam perkakas selepas ia habis atau jika ia tidak digunakan untuk masa yang lama?

    A.

    Jika ia tidak akan menggunakan perkakas elektrik untuk tempoh yang lama, sebaiknya keluarkan bateri dan letakkan di tempat yang bersuhu rendah dan kering. Jika tidak, walaupun perkakas elektrik dimatikan, sistem masih akan menjadikan bateri mempunyai output arus yang rendah, yang akan memendekkan hayat perkhidmatan ribut.

  • Q.

    Apakah keadaan yang lebih baik untuk penyimpanan bateri? Adakah saya perlu mengecas bateri untuk simpanan jangka panjang sepenuhnya?

    A.

    According to the IEC standard, it should store the battery at a temperature of 20℃±5℃ and humidity of (65±20)%. Generally speaking, the higher the storage temperature of the storm, the lower the remaining rate of capacity, and vice versa, the best place to store the battery when the refrigerator temperature is 0℃-10℃, especially for primary batteries. Even if the secondary battery loses its capacity after storage, it can be recovered as long as it is recharged and discharged several times. In theory, there is always energy loss when the battery is stored. The inherent electrochemical structure of the battery determines that the battery capacity is inevitably lost, mainly due to self-discharge. Usually, the self-discharge size is related to the solubility of the positive electrode material in the electrolyte and its instability (accessible to self-decompose) after being heated. The self-discharge of rechargeable batteries is much higher than that of primary batteries. If you want to store the battery for a long time, it is best to put it in a dry and low-temperature environment and keep the remaining battery power at about 40%. Of course, it is best to take out the battery once a month to ensure the excellent storage condition of the storm, but not to completely drain the battery and damage the battery.

  • Q.

    Apakah bateri standard?

    A.

    A battery that is internationally prescribed as a standard for measuring potential (potential). It was invented by American electrical engineer E. Weston in 1892, so it is also called Weston battery. The positive electrode of the standard battery is the mercury sulfate electrode, the negative electrode is cadmium amalgam metal (containing 10% or 12.5% ​​cadmium), and the electrolyte is acidic, saturated cadmium sulfate aqueous solution, which is saturated cadmium sulfate and mercurous sulfate aqueous solution.

  • Q.

    Apakah sebab yang mungkin untuk voltan sifar atau voltan rendah bateri tunggal?

    A.

    01) External short circuit or overcharge or reverse charge of the battery (forced over-discharge); 02) The battery is continuously overcharged by high-rate and high-current, which causes the battery core to expand, and the positive and negative electrodes are directly contacted and short-circuited; 03) The battery is short-circuited or slightly short-circuited. For example, improper placement of the positive and negative poles causes the pole piece to contact the short circuit, positive electrode contact, etc.

  • Q.

    Apakah sebab yang mungkin untuk voltan sifar atau voltan rendah pek bateri?

    A.

    01) Whether a single battery has zero voltage; 02) The plug is short-circuited or disconnected, and the connection to the plug is not good; 03) Desoldering and virtual welding of lead wire and battery; 04) The internal connection of the battery is incorrect, and the connection sheet and the battery are leaked, soldered, and unsoldered, etc.; 05) The electronic components inside the battery are incorrectly connected and damaged.

  • Q.

    Apakah kaedah kawalan untuk mengelakkan pengecasan berlebihan bateri?

    A.

    To prevent the battery from being overcharged, it is necessary to control the charging endpoint. When the battery is complete, there will be some unique information that it can use to judge whether the charging has reached the endpoint. Generally, there are the following six methods to prevent the battery from being overcharged: 01) Peak voltage control: Determine the end of charging by detecting the peak voltage of the battery; 02) dT/DT control: Determine the end of charging by detecting the peak temperature change rate of the battery; 03) △T control: When the battery is fully charged, the difference between the temperature and the ambient temperature will reach the maximum; 04) -△V control: When the battery is fully charged and reaches a peak voltage, the voltage will drop by a particular value; 05) Timing control: control the endpoint of charging by setting a specific charging time, generally set the time required to charge 130% of the nominal capacity to handle;

  • Q.

    Apakah sebab yang mungkin mengapa bateri atau pek bateri tidak boleh dicas?

    A.

    01) Zero-voltage battery or zero-voltage battery in the battery pack; 02) The battery pack is disconnected, the internal electronic components and the protection circuit is abnormal; 03) The charging equipment is faulty, and there is no output current; 04) External factors cause the charging efficiency to be too low (such as extremely low or extremely high temperature).

Tidak menemui apa yang anda mahukan?Hubungi Kami

tutup_putih
rapat

Tulis pertanyaan di sini

balas dalam masa 6 jam, sebarang pertanyaan dialu-alukan!